n-ary Fuzzy Logic and Neutrosophic Logic Operators

نویسندگان

  • Florentin Smarandache
  • V. Christianto
چکیده

We extend Knuth's 16 Boolean binary logic operators to fuzzy logic and neutrosophic logic binary operators. Then we generalize them to n-ary fuzzy logic and neutrosophic logic operators using the smarandache codification of the Venn diagram and a defined vector neutrosophic law. In such way, new operators in neutrosophic logic/set/probability are built. Introduction. For the beginning let’s consider the Venn Diagram of two variables x and y , for each possible operator, as in Knuth’s table, but we adjust this table to the Fuzzy Logic (FL). Let’s denote the fuzzy logic values of these variables as 1 1 ( ) ( , ) FL x t f = where 1 t = truth value of variable x , 1 f = falsehood value of variable y , with 1 1 1 1 0 , 1 and 1 t f t f ≤ ≤ + = ; and similarly for y : 2 2 ( ) ( , ) FL y t f = with the same 2 2 2 2 0 , 1 and 1 t f t f ≤ ≤ + = . We can define all 16 Fuzzy Logical Operators with respect to two FL operators: FL conjunction ( ) FLC and FL negation ( ) FLN . Since in FL the falsehood value is equal to 1truth value , we can deal with only one component: the truth value. The Venn Diagram for two sets X and Y

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval Neutrosophic Sets and Logic: Theory and Applications in Computing

A neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. The neutrosophic set is a powerful general formal framework that has been recently proposed. However, the neutrosophic set needs to be specified from a technical point of view. Here, we define the set-theoretic operators on an i...

متن کامل

Applications of Neutrosophic Logic to Robotics A

In this paper we present the N-norms/Nconorms in neutrosophic logic and set as extensions of Tnorms/T-conorms in fuzzy logic and set. Then we show some applications of the neutrosophic logic to robotics. I. DEFINITION OF NEUTROSOPHIC SET Let T, I, F be real standard or non-standard subsets of ]0, 1[, with sup T = t_sup, inf T = t_inf, sup I = i_sup, inf I = i_inf, sup F = f_sup, inf F = f_inf, ...

متن کامل

N-norm and N-conorm in Neutrosophic Logic and Set, and the Neutrosophic Topologies

In this paper we present the N-norms/N-conorms in neutrosophic logic and set as extensions of T-norms/T-conorms in fuzzy logic and set. Also, as an extension of the Intuitionistic Fuzzy Topology we present the Neutrosophic Topologies. 1. Definition of the Neutrosophic Logic/Set: Let T, I, F be real standard or non-standard subsets of ]0, 1[, with sup T = t_sup, inf T = t_inf, sup I = i_sup, inf...

متن کامل

n-Valued Refined Neutrosophic Logic and Its Applications to Physics

In this paper we present a short history of logics: from particular cases of 2-symbol or numerical valued logic to the general case of n-symbol or numerical valued logic. We show generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and Lukasiewicz’ 3-symbol valued logics or Belnap’s 4-symbol valued logic to the most general n-symbol or numerical valued refined neutro...

متن کامل

Interval Neutrosophic Logics: Theory and Applications

In this paper, we present the interval neutrosophic logics which generalizes the fuzzy logic, paraconsistent logic, intuitionistic fuzzy logic and many other non-classical and non-standard logics. We will give the formal definition of interval neutrosophic propositional calculus and interval neutrosophic predicate calculus. Then we give one application of interval neutrosophic logics to do appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0808.3109  شماره 

صفحات  -

تاریخ انتشار 2008